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Thermodynamic properties of a lattice model of aqueous mixtures
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The thermodynamic anomalies of water have been studied for a long time by statistical models that incor-
porate the effects of hydrogen bonding in a qualitative manner by adding certain orientational degrees of
freedom. In this paper, we study how these anomalies are carried over to agueous mixtures, in which the other
component molecules form van der Waals bonds with water molecules as well as among themselves. For this
purpose we adapt a recent model due to Sastigl., which is quite successful in exhibiting these anomalies
for pure water. In particular, we have studied how anomalous behavior of density and compressibility varies
with composition over a range of temperatures and pressures. We have also obtained a few typical phase
diagrams for these mixturegS1063-651X98)11709-9

PACS numbg(s): 64.70.Ja, 05.70.Ce, 64.60.My, 82.60.Lf

I. INTRODUCTION compared to those in the low density regide$ The high
density configurations though have higher internal energy yet

Water [1] has long evoked wide theoretical interest be-are more stable at high temperatures as the contribution of
cause of its various peculiar physical properties. The mosbrientational entropy to free energy partially compensates
widely studied peculiar properties include the followirigt  their higher energy as well as the lower configurational en-
the density anomaly, i.e., the density of water is maximum atropy.
4 °C, and its thermal expansivityp is negative below 4 °C Although there is general agreement over the microscopic
in some temperature and pressure rarigeThe isothermal  origin of these anomalies, the issue of the thermodynamic
compressibilityK; increases with decrease in temperaturepehavior resulting from this microscopic behavior is still un-
below a certain temperature (50 °C at normal pregsiic®  resolved. We have attempted to gain some understanding of
The constant-pressure specific h&jf of water is rather these issues by studying aqueous mixtures. The agueous
large and also increases as th_e temperature is lowered _belcﬁ’ﬁxtures are important in their own right, but they can also
some value. All these anomalu_as are further enhanced in thg ,cigate the role of hydrogen bonding in a larger context.
supercooled or metastable regions of water. Thermodynamic properties of mixtures depend mainly on

There is a 9‘?”9“’"' agreement on the_m|croscop|c orgin 0ﬂthe nature of interactions among its various constituents. The
these peculiarities. They have been attributed to the Presence s issues that can be addressed are as follows:

of a hydrogen bondHB) network in water. The experimen- (1) Density anomaly: The temperature of maximum den-

tal data[2] as well as the detailed microscopic results pro- . . :
. . : _ sity (TMD) results from a complex interplay of two kinds of
vided by computer simulationg3—6] seem to suggest that bonding in water, namely, vW bonding, which favors denser

liquid water is a broken network of HBs where there are .
regions of strong linear HBs interspersed with regions optates and the hydrogen bonding that favors open structures

weaker bonding. The strongly bonded or the low energy reyvi.th Iovx_/er density. Further, the formation of HBs.Iocks up
gions are characterized by tetrahedral coordination, i.e., eac}ientational degrees of freedom. Thus, entropically also
oxygen atom is surrounded by four hydrogen atdofsthe there is a competition between orientational entropy and con-
neighboring molecules, thus forming a netwotacated at figurational entropy. For vW bonded high density structure
the corners of a regular tetrahedron. The formation of HB$NE gains orientational entropy but may lose in configura-
between two water molecules is possible only when the twdional entropy. On the other hand the reverse happens for the
are properly oriented with respect to each other. The hydroHB structure. Thus formation of mixture by addition of the
gen bonding thus leads to freezing of orientational degrees afther componenimolecules other than water molecylesll
freedom. Hence the HB regions are characterized by lovhave an effect on the structure of water resulting in a conse-
entropy. The open tetrahedral geometry gives the hydrogerguent shift in TMD. It is known[7] that the addition of
bonded regions of water its low local density. The groundentities that result in breaking of HBs thereby reducing the
state of the hydrogen-bonded water characterized by an opexcess volume associated with the open structure of HB re-
low density structure of low entropy makes ice less densgions of water causes the TMD to shift towards the low
than liquid water. temperature side. The reverse may happen for the molecules
The water molecules also have van der Wdaly) inter-  that form HBs with water molecules or among themselves.
actions, which are weaker than HBs and are orientationallyr hus the nature of bondin@.g., vW, HB between the water
independent. These interactions acting alone would lower thenolecules and the molecules of the other component of the
energy of high density configurations. The weakly bondednixture could have a large effect on the density anomaly.
regions are characterized by a higher local density and higher (2) Anomalies in response functions: The effect that the
molecular mobility. The molecules in the high density re-addition of other components to water has on the isothermal
gions also have significantly larger orientational entropycompressibilityK+, isobaric heat capacitZ,, etc. could
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also provide insight into the thermodynamic behavior of wa-there are mainly two thermodynamic scenarios that rely on
ter. distinct mechanisms to explain anomalous behavior. One is
(3) Supercooled water: Thermodynamic anomalies of wathe stability limit conjecture due to Speef,9,10-12 dis-
ter become more pronounced on supercooling. Among theussed above. Here anomalous behavior of isothermal com-
interpretations of this behavior is a postulate put forth bypressibility and isobaric heat capacity comes from the fact
Speedy[8,9]. This postulate, called the stability limit conjec- that both these quantities must diverge at the spinodal. The
ture (SLO), predicts that in thé>-T plane there should exist retracing of the spinodal is argued to be a thermodynamic
a continuous spinodal curvfocus of limits of stability = consequence of the negative sloping of the locus of density
bounding the supercooled, stretcH@dnegative pressure re- maxima (TMD). The other scenario is due to Podéal.
gion), and superheated states. This line marks the points ifiL3], who argue that a novel, metastable low temperature
the P-T phase diagram where the metastable state of liquidritical point is responsible for water's anomalous behavior.
water becomes thermodynamically unstable. The existencehey have also observed that the slope of TMD does not
of such a curve towards the supercooled side cannot be exemain negative, but changes sign at negative pressures. This
perimentally verified as the homogeneous nucleation occurshange in sign of the slope removes the thermodynamic re-
above this temperature and the instability temperature, whichuirement for the spinodal to retrace.
is —45°C at atmOSpheriC pressure, is not accessible. The Many |attice mode's have been proposed to exp|ain the
additi_on of ano?her component often results in Iowering prroperties of water. Bel[14] proposed a model with mol-
freezing and boiling points by a considerable amount. This inycles centered on the sites of a body-centered cubic lattice:
principle can make the instability temperature more acCeSzach molecule could be oriented in 12 ways. In addition to a

_S|ble|and prpt;fd_ef ?hwa)(/jctj(_)t_exar?ltr;]e thteh conjecture. Btu; thigavorable bonding energy, the model included an attractive
IS only possiblé It the addition of the other componen oestirst—neighbor interaction and three-body repulsion, which
not also lower the instability temperature or raise the homogaiscourages close packing. Bell solved the problem in a qua-

enous nucleation temperature. . . S i :
(4) Study of phase diagrams of binary mixtures can alsoS|chem|cal approximation and he obtained the density

reveal the effect of the addition of the other component orfnaxima. A s!!ght variation of Bell s mode]14] was pro-

the entropy of the system. In ordinary substances, i.e., sutfeSed by Meijeet al. [15], who introduced a second neigh-
stances without HB, at high temperatures it is the entropy of©F répulsion instead of the three-body force used by Bell.
mixing that favors the system to exist in homogeneoustThe repulsive next r_learest ne_|ghbor pairs are mcluded_ to
mixed state. At low temperatures when the internal energy i§révent close packing. In this model also the density
the dominating influence on free energy, demixing of phase@nomaly appears along with a negatively sloped melting
is favored. curve between the liquid and a less dense icelike phase.

In the case of aqueous mixtures the system has extra con- Borick and Debendettj16], using the model of Meijer
figurational entropy on account of the orientational degreest al.[15], have thoroughly investigated the equilibrium and
of freedom. At the simplest level, depending on their inter-stability behavior of the model in an improved approxima-
action with water molecules, the impurities can either breakion. Their results include quantitative parameter mapping of
HB'’s, thereby releasing the orientational degrees of freedonthe phase behavior and characterization of density anomalies
or conversely they can lock up these degrees of freedom bgnd stability limits. Sastryet al. [17] have introduced a
forming stronger HB's with water or among themselves. Butmodel to incorporate the open structure on a lattice parti-
for certain impurities water exhibits more complex behavior.tioned into two sublattices andB. In the ground state, one
The prime example is the clatharate structures in ice, whiclof the sublattices is completely occupied and the other is
are distortions of hexagonal structure to cubic forms, byempty. The orientational degrees of freedom are incorpo-
forming cages that accommodate these impurities. In the ligrated by associating a Pott’s varialktewith every occupied
uid state also for certain impurities large complexes aresite. This Pott’s variabler; can takeq values out of which
formed involving several water molecules with a single im-only one is associated with the orientation favoring hydrogen
purity molecule[7]. bonding. Sastryet al. [17] have solved this model in the

There have been a good many statistical mechanical studrean-field approximation and have reported waterlike phase
ies of the thermodynamics of water. As most of the pecubehavior, density maxima, and a retracing spinodal.
liarities of water are due to the directional nature of the HB In a later study, however, Sastey al. [18] presented ar-
any good model should incorporate the following featuresguments that establish that anomalies of water may not nec-
(1) The low temperature stat@round statgof the system essarily depend on singular behavior in the metastable re-
should have an open, low density structure like that of icegion. They show that the presence of a negatively sloped
(2) Linear HBs can form between two molecules only whenTMD implies an isothermal compressibility, which must in-
(a) local configuration is open ang) the participating mol- crease with decreasing temperature. They have also used a
ecules are properly oriented3) Increase in local density lattice-gas model that captures some of the crucial features of
with respect to the open structure must result in an increaseater (like density maximum in a simple statistical way.
in the (a) local energy andb) local entropy. Though the This model exhibits behavior qualitatively similar to that ob-
number of models put forth in various studies is large, noserved in molecular dynamics simulations of wdte]. In
single model to date has been able to satisfactorily accourthis model the orientational degree of freedom is represented
for the thermodynamic behavior of water over the entireby a Potts variable at each lattice bond. This is the model that
range of temperature from the supercooled region to the critiwe found very useful for discussing aqueous mixtures. The
cal temperature. For the metastable or supercooled regiamodel is[18]
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H negative to positive, thus removing the thermodynamic ne-
H=1=~= —J> ninj— 3832 min; O, 1oy (1)  cessity of a retracing spinodal. The locus of temperature of
B () (i compressibility extrem&TEC) has also been explored in de-

In Eq. (1) n; is the occupancy variable at a sitef the lattice  tail. The main result of the study is the absence of retracing
such thatn; =1 for every occupied site angj=0 for every ~ SPinodal bounding the supercooled metastable state of water.
vacant site. The Potts variabtg; defines the orientation of There have been many studies on aqueous mixture and
moleculei with respect to moleculg and can take values.  their properties in physical chemistry. The statistical me-
Jis the VW interaction energy ani 8J is the energy due chanical studies are limited to exploring the phase diagrams
to HB formation.kg is Boltzmann's constant and is the ~ ©Of binary mixtures in general, including hydrogen-bonded
temperature. Clearly, as far as the orientation variables af@ixtures. The most well studied of all the models of binary
concerned the model is a gross simplification, as it ignore§1ixtures is the lattice-gas model of Walker and Va(s#/)

the correlations between the variableg , oij,, ..., ie, [19,20. The WV model is quite successful in understanding

1

between the bond variables originating from the same site Ahe closed loop phase diagrams of binary mixtures.
; ong 9 e »"" The WV model has further been explored by Goldstein
more appropriate, but considerably more difficult, model is

and Walke{21] and Goldstein22]. Caflish and Walkef23]

that of Vause and Walked9] have tried to modify the WV model to incorporate vaporiza-

1 tion in the model. These studies, however, have not consid-
=_> nin[Ky+ (K1 —K3) 8, 5.1, (20  ered the density and other anomalies of water.

20 Y The scope of this study is limited to examining the fol-
lowing simpler points about aqueous mixturés: the effect
of the other component on the orientational entropy of the
system and its interplay with the usual entropy of mixitg,
%he study of the volume anomaly associated with HB'’s. In
this paper we study only those mixtures in which the second
component molecules form only vW bonds with water mol-
ecules and among themselves. In the next section we set up a
lattice gas model for a binargAB) mixture, in which one

H

wheren; is the usual occupancy variable, takesq values,
K, is the energy of the HB, and, is the energy of the vW
bond. Under a simple approximation this model also leads t
similar results. Apart from the directional natuaientation
dependengeanother important feature of HB’s is the low
local density accompanying every HB formation. This fea-
ture of HB’s is crucial for density anomaly of water. The

model of Sastryet al. tries to achieve this goal in a simple - :
manner by defining an interaction dependent volume at ea pe of molecule(sayAA) has a possibility of HB formation.

lattice bondij. The total volume of the system is then the e Incorporate yvate_rhke properties through the model of
o . .. Sastryet al. as given in Eqs(1) and (3). We then make a

sum of the specific volume at each lattice bond, which is . A .

. : ! .. -mean-field approximation and obtain the free energy and the

expressed in terms of an interaction dependent contribution

to volumey, ; . An extra volume is associated with every HB equation of state for the system. These equations are then
. b . solved numerically to get the various thermodynamic prop-
interaction, so thab; j=v,+ év, wheredv is the extra vol- ylod y prop

. ! - . erties and phase diagrams. The numerical results are pre-
ume associated with HB andij=v, otherwise. Thus the sented in Sec. lll and Sec. IV concludes this paper with a
total volumeV becomes

brief discussion of the results.
V:(E> (U1+ 5Uninj 5‘7i [0 i)
1,] ! !

Nozv
= 0 1+5l)2 ninj5a.__ o
2 i H

II. LATTICE MODEL AND FREE ENERGY

3) In this section we present a lattice gas model for aqueous
mixtures (say AB) in which the water molecule¢A) are
bonded to other component molecu(& through vW bind-

whereNg is the number of lattice sites armis the coordi-  ing. The molecules of the other componéather than wa-

nation number. ter) of the mixture form only vW bonds with each other as
It can be seen from Eq¢l) and (3) above that the con- well as with water molecules. Further there are no orienta-
figuration of water molecules with strong HB interactions tional degrees of freedom associated witmolecules, un-
defines a state of low local energy and low density while thatike water molecules. A binary mixture could be described in
with weak VW interactions defines a state of high local enterms of occupancy variableB® and P such thatPA(®
ergy and density. For this type of system the entropy density_ 1 jf the ith cell is occupied by thé (B) atom (moleculd
is a sum of a configurational part and an orientational partgng zero otherwise. ThAA interactions in our model are

The free energy for this model is calculated in the mean-fielthoth W and HB type. Our model Hamiltonian is
(MF) approximation. The partition function is calculated in a

special grand canonical ensemble, in which one sums over
not only particle number but also the volume, i.e., the num-

. . . — ApA
ber of lattice sites. By performing a sum over the Pott’s H——%‘, [(Jaat 83ando, | o, )PP
variableo; ; or the orientational degrees of freedom, the par-
tition function is reduced to an effective lattice gas partition +Jas(PIPP+PPPH) +JggP P}, (4

function with temperature dependent interaction parameters.

The results of this model include anomaly in density and

isothermal compressibility. The locus of temperature ofwhereJa,, Jag, andJgg represent the strength of vW in-
maximum density(TMD) is found to change slope from teraction between particle paifgh, AB,andBB, respectively
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and 8J, 4 is the additional energy due to HB formation. In- Such an ensemble is necessary because the volume is a dy-
clusion of orientational degrees of freedom is by associatingnamical variable here and one is interested in tracking the
Pott's variable. density anomaly. The partition functiaggiin this ensemble is

To account for the fact that each HB is associated witha function of only the intensive parameters pressjreem-
increased local volume, we follow exactly the same proceperatureT, and chemical potentialg, and wg for the two
dure as described by Sastey al. [18]. We define an inter- species, respectively:
action dependent volume at each lattice sit€he total vol-

ume of the system then becomes Z(P T, up pp) =2 2
No Si,ajj
V= (Z) (v1+ 808, ,, PP X exf — B(H+PV—uaNa— usNg)],
ij
(6)
— ApA
= Novo + 6v >, S0, PP - (3 where 8= 1kgT. As noted by Sastnet al, although the

4 corresponding free energy(P,T,ua,ug) is identically
In the above equation;o=v4z/2. The total volume of the zero, it is still useful for deriving the equilibrium properties.
system thus depends on the number of HB's present. The fact that partition functiolE=1 provides an additional
For evaluating the partition function for the above Hamil- relationship for evaluation of dependent variall&8]. Sub-
tonian we work in an ensemble in which both the volume ofstituting the expression foH, V in Eq. (6), the partition
the system as well as the number of particles can be variabléunction becomes

1-3 ext=pPooNo S 3 T, o £3) (OusP! Pl PRS- PEPT) g PP
0 )

S, o {S}
+/3<6JAA—P6v>iEj PPy, oyt B2 (APl ePP) | (7)

In the above equation the summation oyer ;} variables is to be carried out for individual bonds, which can be done exactly
here as the partition sum breaks up into independent factors. This summation including the chemical potential factor, i.e.,
exfl(ua/2) (P{+P})] for one bond, depends on occupancy varig®feand P in the following manner:

1 if PR=Pf'=0
2 {1+ BKPIPN ~ 116, . =1 A XK B ual2) if PP+Pi=1 (g
R o2 exp(2B ual2)[ 1+ (1/) (exp( BK,) —1)]  if PA=PA=1,

whereK = (8Jaa—Pév). Thus, our partition function takes the form

Z=1=>, exp— BPvoNo) > exp[ﬁ}‘, [ 1+ 1(exp(/aKp)—l) )PiAP]A
No {si} ] aq

kgT
+3aa(PFP]+ PPPT) +35aPPPT |+ B2 | pat —-In(a) | P+ ugPP - 9
For convenience of calculation, we introduce a three state spin vari@btes 1,0 in terms of which
PR=3(S/+S),
(10

PP=3(S'-S),
such thatS5;=1(—1) corresponds to a lattice sitdeing occupied by moleculs(B) andS;=0 corresponds to a vacant lattice
site. Thus Eq(9) takes the form

1:NZ exp(—ﬁPvONo){E} exp[ﬁZ {KeSPS +Lo(S7S+ SS9 + eSS+ B (DeSI+H.S) |, (12)
o S i '

where the various interaction parameters are
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1
(‘JAA+ 2‘JAB+‘JBB)+kBT In 1+ a(quBKp)_l)}] y

1
Ke:Z

1 1
Le:é_l{ (Jaa—Jgg) +KgT In| 1+ a(eXFX:BKP)_ 1)H’

Je:%[ (Iaa—23pp+Jgg) + kT In[ 1+ %(exp(,BKp) - 1)“ , (12

_matus  kgT

De 2 + Eln(q),

:MA_MB

H ke,

Now we use the mean-field approximation to evaluate the partition funi@iéin For this we define two order parameters
as follows:

(13

where( ) corresponds to ensemble average. The order para@eterresponds to the average particle density intb the
concentration difference between the two species.
In the mean-field approximation the partition function becomes

N - -
1=, exq—,BonNO)exp{— ﬁZOZ(KeQ2+2LeQM+JeM2)
No

X[1+exp{B(zKeQ+2zLM+Dg)}2 cosiB(zJM +zLQ+Hg) }No. (14)
|
This expression has the form Pug=—A
- z - ~
1=N2 exf — BPvoNg—NoBA(Q,M,5,D,H)]. (19 =- E(KeQzJr 2L.QM+J.M?)
0
The sum oveN, is dominated by just one term, which maxi- +kgT In{1+2 exd B(zKQ+2zLM+D,)]
mizes the exponent, i.e., - ~
X cosH B(zJM + 2L M +He) 1} (19)

1=exp{—B[PvotAQM.B.D.H)INot, (160 14 \ariational equations yield

whereN, is determined from the equation 2 exf Bd;)cosk Bd,)
- ~ 1+2exgBd;)cosh Bd,)’
pogtat| DN AML o an 20
vo QN © M N O o 2expipdysinh 3y
0 1+2 exp Bd;)cosi Bd,)’

However,Q andM are variational parameters, which are to _ = (1R
be determined from the condition where d;=(zKQ+2zLM+De) and d,=(2JM+2zLQ

+Hg).
IA The free energy in Eq19), which is a function oD and
— =0, H., is not the most appropriate potential for getting the
7Q physical properties of mixtures with fixed concentration. So
(18 we perform a Legendre transformation to obtain the free en-
A ergy G(P,T,N,M), where the independent variallle=D
m_o' — (kgT/22) In(g) andH=H,.— (kgT/22) In(q) have been re-

placed by particle numbeét=NyQ and concentration differ-
Thus enceM =M/Q. Note that
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Na+Ng Equations(23), (24), and (25) are sufficient for the pur-
= N pose of studying various thermodynamic properties of aque-
0 ous mixtures.
We explore the density anomaly and thermodynamic re-
~  Njp—Ng sponse functions, i.e., thermal expansivitg= (1/v) dv/
M= 2D 4T, isothermal compressibilitf K= — (1/v) (3v/dP)1]
and isobaric heat capacififCp=—T(9°9/dT?)p]. The ex-
pressions for these quantities are given below:
Na—Ng
M= N NG
ATTTB 1 vy Zdv
: o a=—| - —+—-MD;
whereN,g) is the number ofA(B) moleculesG is given by v Q? 2
z KpD
G(P,T,N,M)=)(P,T,D,H)+D(Na+Ng)+H(Na—Ng) X g(el— PT 1M, +kg In(l—Q)}Tl
=N(D+HM). (22 o2
Q 1
Denoting - EMl ovz(q—1)BKp eX[X—BKp)? , (26
1 where
g(P, T,M)= NG(P,T,N,M),
1+M\2
we obtain the most convenient free-energy potential for our M= 5 |
purpose, viz.,
1
(P,T,M)=—2Q(Ke+2L M +JIM?) =
’ el D1 T (@ Dexe— AKp)”
= Q 1+M [1+M
+kgT{ In 1-0 + 5 5 L
Gi=In| 1+ —[exp BKp)—1]|,
+1_M| (1_M } kBT(1+M)I “ 1 q[ A BKp) ]}
n -— n(q).
2 2 z and
(23
Eliminating D andH from Eq. (19) gives us the expression T,= (1-Q) >|.
for pressure kgT—zQ(1-Q)(Kg+2L M+ IM?)
Using the above definitions we can write the expression for
2 ) -
p—_ EQZ(KeJF 2L M +IM2)—ksT In(1— Q). isothermal compressibility
(24) 1 Vo ovz 2
. . o . Ki==llg~ 5 MiD1| 1
The free-energy expression fgrcontains the auxiliary vari- v\ Q 2
able Q, which must be eliminated by use of the expression 2 _ _ 2
for pressuré®. To perform the calculations, one obtains from TLov AQz(q-L)exp(— fKpIMDI].  (27)
Eq. (24) the values ofQ for given values ofP, T, andM. Similarly, the isobaric heat capacity is
Note thatQ is not a single-valued function ¢, T, andM.
Depending on the parameter values one obtains one, two, or - @ )
three solutions giving rise to as many branches of free en- _Kg z
ergy. For the purpose of studying the thermodynamic anoma- CP_? In(1-Q)+ T(Gl_'BKPDl)Ml T
lies in the supercooled regime it is the branch corresponding
to the density anomaly that is of interest. This branch may zQ )
not always be the lowest free-energy branch. For the purpose +| 57 BKp(A—1)exp(— BKp)D1 "My |. (28)
of studying the concentration-temperature phase diagrams,
the lowest branch gives the appropriate free energy. Il NUMERICAL RESULTS
The volume of the system can be derived using the rela- '
tion v = ¢g/JP, to obtain A. Thermodynamic properties
5 Using the equations presented in the previous section, we
_ Vo Q ovz (1+2M+M*?) study the thermodynamic properties of the system described
YT Q " 2 [1+(g-1)exa— BKp)] 4 ' above. We shall focus on the concentration dependence of

(250  anomalous properties like TMD curve,p, Ky, and Cp.
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FIG. 2. The locus of the temperature of maximum density TMD
for different values ofM: curve a, M=0.25; curveb, M=0.50;
curvec, M=0.75; and curvel, M=1.00. HereM is a dimension-
less number and the units @fare the same as in Fig. 1.

1.20

.y
My
[s,]

versus temperature curves. It should be noted that there is
no density anomaly in th® versusT curves.

We track the density anomaly, i.e., the temperature of
maximum density(TMD) or minimum volume in they-T
plane over a range of pressures. The locus of all such points
in the pressur¢P)—temperatur€T) plane constitutes what is
known as the TMD curve. Since one of our goals in this

0.3 0.6 0.9 study was to understand the effect of addition of the other
(b) Temperature T — component on the density anomaly, we locate the TMD in
the P-T plane for different relative concentrations of the mix-
ture. The curves shown in Fig. 2 correspond kb
=1.0,0.75,0.50,0.2&ecreasindvl in our model corresponds
%o increasing concentration of the other component of the
andc mean the same as (a). The arrow indicates the temperature mixture, asM=1.0 corresponds to pure waleit is cl_ear
of minimum volume or maximum densityTMD). The units of  TOM these curves that as we increase the concentration of the
various quantities are as follow is dimensionlessT is in the ~ S€cond componerisayB) the temperature of maximum den-
units Jaa/Kg, P is in units ofJaa/vg, andv in the units ofvg. sity moves towards the lower temperature. This shift can be

understood as follows: As the concentration of the second

Our model is successful in reproducing anomalies in densitygomponent of mixture goes up the number of hydrogen
isothermal compressibility, and thermal expansivity. Thebonds in the mixture go down, resulting in the volume de-
data shown are for the choice of parametg(g/Jao=0.25, crease and the release of orientational degrees of freedom.
Jge/Ian=0.50, 6V/IVy=0.953, 8J,4/Jan=0.25, q=100, These orientational degrees of freedom lead to an increase in
and z=4. In all the diagrams belovP is in the units of the overall entropy of the system. This increased entropy is
Jdaalvg andT is in the unitsdaa/Kg . responsible for the shift in TMD towards the lower tempera-

To get the density anomaly we use E(®)) and(25). We  ture. This result is in accordance with the thermodynamic
eliminateQ from Eq.(25) using Eq.(24). It should be noted expectation[7]. Note that the TMD curves do not have a
that Q would have represented the density if we had nothegative slope all through, which as we shall see is consis-
included the additional volume associated with hydrogerient with the absence of a retracing spinodal. The anomalous
bonds. It is clear from E¢(25) that the volume is the sum of trend in the coefficient of thermal expansion or thermal ex-
two terms whose dependence on pres§®eand tempera- pansivity ap is related to the volume or density anomaly.
ture (T) are different. It is the second term that gives rise toThis is clear from the definition ofp=(1/v) (dv/JT)p al-
the anomalous behavior resulting in a minimum in volume-ready given in the last section. Tl , unlike other normal
temperature curve. Figureéd depicts theQ versusT curves liquids, becomes negative at the temperature where volume
for different values of pressure. Thoudh is a multiple- becomes minimum or the density becomes maximum.
valued function we only show the branch that gives rise to In Fig. 3, we show some of the representative curves for
anomalous trends in volume. It may be noted that the volumerp versusT curves. Figure @) corresponds to=1.0 and
anomaly does not always occur in the lowest free energyn Fig. 3 (b) we show the curves fdvi=0.50. A comparison
branch. This means that the density anomaly is carried ovenf the two figures reveals that the zero-crossing temperature
to the supercooled region, which is metastable in the seng¢he temperature below whichp, becomes negatiyeof the
that a lower free energy branch also exists at that temperaoefficient of thermal expansion has moved towards a lower
ture. In Fig. 1b) are shown the corresponding volume temperature, a trend similar to that exhibited by the TMD.

Volume v —»
-
S

|||I||I|I|l|||

1.05

el e by e g 1

FIG. 1. (&) TheQ vs T curve. The three curves shown are for
different fixed pressures: cung P=—0.15, curveb, P=—0.10,
and curvec, P=—0.05. It can be seen that these curves do not hav
any extrema(b) The volumev vs T curves where the symbois b,
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FIG. 3. Coefficient of thermal expansion as a function of tem-  FIG. 4. Isothermal compressibility as a function of temperature
perature for(a) M =1.00 for different fixed pressures: curee P for (& M=1.0 the three isobars are f&=—1.00(a), P=—0.96
=-0.38; curveb, P=—-0.34; and curvec, P=—0.30; (b) M (b), and P=-0.92 (c); (b) M=0.50 for P=-0.64 (a), P=
=0.50 for P=—0.24 (a), P=—0.20 (b), and P=—0.16 (c). The —0.62(b), andP=—0.60(c). It may be noticed that the region of
temperature of zero crossing is marked in the figuseis in units ~ abnormality moves up towards high pressure values. Khés in
of kg /Jaa. The units of the rest of the quantities are the same as iminits ofvo/Jaa and other units are same as in Fig. 1.

Fig. 1.

] The existence of a retracing spinodal in the supercooled
One also notes that the anomaly is enhanced at lower teMagion of water is one of the issues that is still debated.
peratures, which is consistent with the observed behavior. according to the two prevailing thermodynamic scenarios

In Fig. 4, we show the curves for the isothermal com-[g 13, it is necessary that if the TMD remains negatively
pressibility K1 as a function of temperatur€. Figure 4a)

shows isothermal compressibility isobars for different pres- — T
sures forM =1.0. Figure 4b) shows similar curves foM
=0.50 for different pressure. It was observed that the extre-
mum of the isothermal compressibility moves towards higher
pressure. The locus of all the temperature& ¢fminima for
different pressures constitutes what is known as the TEC
(temperature of extremum of compressibiliurve.

In Fig. 5, the TEC curves for different values bf are
compared. It is clear from these curves thatvhslecreases
the TEC moves towards higher pressure and lower tempera-
ture. The addition of other components to water also affects 0.7
its critical point and its phase transition temperatures. This
effect can be observed in the press@P—temperaturgT) L
phase diagrams by tracing the liquid-gas coexistence curves. 025 035

. . . Temperature T —
Figure 6 shows four such coexistence curves corresponding
to M=1.0,0.75, 0.50, and 0.25. It can be seen that with the FiG. 5. The locus of compressibility extrem@EC) in the
increase in concentration of the other component, the coeXyressure-temperature plane. The four curves aréMfer0.25 (a),
istence curves not only move to the low temperature side buy1=0.50 (b), M=0.75(c), andM =1.00(d). As M goes down or
also decrease in expanse. The critical poifif,(P.) also the concentration of the second component increases, the expanse
goes down withM . of TEC decreases and it moves to the low temperature side.

Pressure P —
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FIG. 6. The liquid-gas coexistence curves the system under (52 I L L L L BB
study in the pressure-temperature planeNbr 0.25(a), 0.50 (b), i
0.75(c), and 1.00(d). The critical point moves down in temperature B
and pressure dsl decreases. Tr
: . $4 -
sloped over the entire range of pressures then the spinodal <~ |
must retrace at the point of intersection of the two curves or § i
else the TMD must change slope, removing the thermody- o |
namic necessity on the spinodal to retrace. To get the spin- g, |
odal we track the isothermal compressibility as a function of o |
temperature. For a given pressure the spinodal temperature is i
the temperature at whiciK{—«. The spinodal that our L
model gives is the liquid-gas spinodal, which terminates at oluia] T BRI A,
the liquid-gas critical point T, P¢). In Fig. 7 we present 0.1 0.2 0.3 0.4 0.5 0.6
the spinodals obtained for our model fidr=1.0, 0.75, 0.50, (b) Temperature T —

and 0.25. These spinodals have also been found to follow the
same trend as all the other quantities discussed so far. Tl?gr

spinodals also move to the high pressure and low tempera- o (b), P=—0.05 (). and(b) M=0.50 curvesa, b andc are

ture side E_‘SVI goes _down. Thus t_h_e model does not dISpIayfor the same pressures as(a. It can be seen that these curves do
the retracing of spinodal to positive pressures on the low, : show any anomalous behavi@,
temperature side, as the basic model on which it is based also
has this feature.

In Fig. 8 we show a set of representati@ versusT _
curves corresponding to the metastable branch of free en- We also present the concentration-temperatuve-T)
ergy, which shows a density anomaly. These results shoRhase diagrams for the aqueous mixture using the model
that in the parameter range studied by us, the specific heg€rived in the previous section. To get the phase diagrams,

Cp of the model, unlikeK;, does not exhibit anomalous We first obtain solutions fo@ for fixed values ofP andT.
behavior. There are in general one to three solutions. The free energy is

then obtained for each of these solutions. These are then
plotted as a function of concentration varialde for each

FIG. 8. Isobaric heat capacity, as a function of temperatuiie
(@ M=1.0 the different isobars are fd@?=—0.50 (a), P=

is in the units ofkg .

B. Phase diagrams

0.5 T T T T | T T T T I T T T T | T T T T

value of P andT. If the branches do not overlap, the lowest
/<—(ch'° brgnch corresponds to the equilibrium phase.'For a sin'gle
0 /b/c/d mixed phase to be stable the free energy of this branch is a

globally convex function of the concentratidth. When the
homogeneously mixed phase is no longer stable, the system
decomposes into two coexisting but distinct phases of differ-
ing densities and compositions. This is indicated by the in-
tersection of the different branches of free energy. The con-
centration and densities of the equilibrium phases can be
calculated from the free-energy curves by common tangent
construction. Sometimes a single phase separates into two
15 P phases of different compositions but the same density. This
0.3 0.6 0.9 . e .
T is indicated by the lack of global convexity of the lowest
emperature T — - .
free-energy branch. Depending on the values of the various
FIG. 7. The spinodal curves in the pressure-temperature planearameters of the model there is a possibility of the existence
for M=0.25(a), 0.50(b) 0.75(c), and 1.00(d). The response func- Of a number of different phases. We here present a few rep-
tions K1 andCp become singular at the spinodal curves. resentative situations. The phase diagrams are considered un-
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FIG. 9. M vs T phase diagram fodag/Jaa=5/7 andJgg/Jan
=3/7, andP=0.2/7.

FIG. 11. Phase diagram fodag/Japn=40/63 andJgg/Jap
=19/21, andP =2/63.T is the eutectic temperature at which three
phased., «, andB coexist.

der the condition of fixed pressure. We denote Lbythe

phase corresponding to a smallé value. Since in our Figure 11 shows the phase diagram for the following pa-
modelQ does not represent the true density of the system orameters: Jog/Jaa=40/63 and Jgg/Japn=19/21, and P
account of the extra volume resulting from the formation of =2/63. This diagram is referred to as the eutectic phase dia-
HB, this phase may or may not be the low density phase. Thgram. It shows the coexistence of three phdses, andg at

true density of the phase is calculated by substituting for theyne temperaturd. The other phases can be seen in the
value ofQ in Eq. (25). The highQ phase is labeled b$. diagram.

The phases labeled ky and g differ in concentratiorM but
have the samd&) values generally in the range of tt&
phase.

Figure 9 depicts a situation where there is complete mis- We now present a brief discussion of our results. We
cibility betweenA andB. The dimensionless interaction pa- undertook this study to understand how the anomalies of
rameters and pressure used agg/Jaa=5/7 andJgg/Jaa  water are affected by the addition of another component to
=3/7, andP=0.2/7. At high temperatures it is thephase  water. The lattice-gas model we used for aqueous mixtures is
that is stable, as the temperature is lowered there is a posselevant to those situations in which the other component

IV. SUMMARY AND DISCUSSION

bility of the coexistence of. and S phases. At still lower

temperatures it is th8 phase that is stable.
In Fig. 10 we show the phase diagram for the interactiorpressibility, and thermal expansivity vary with the concen-

parameters and pressurdag/Japn=17/23 and Jgg/Jan

forms vW bonds with the water molecules. Using this model
we studied how the anomalies in density, isothermal com-

tration of the other component. The results are according to

=1.0, andP=0.8/23. Now at low temperatures the demixing our expectation. This type of modelling does not include

of phases is energetically favorable and two phasasd 3

more complex features that water is known to exhibit,

coexist. At a higher temperature a homogeneously mi&ed |ike complex formation or structural alterations as in

phase is stable. At a still higher temperatureoexists with

clatharates.

the S phase. Above this temperature the mixture exists in a We also present concentration-temperature phase dia-

singleL phase.
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FIG. 10. Phase diagram fodag/Japn=17/23 andJgg/Jan

=1.0, andP=0.8/23.

grams. Though we have shown only three phase diagrams,
our model is capable of producing many more phase dia-
grams for different parameter values. For the parameter
range explored by us, these phase diagrams are not qualita-
tively different from mixtures with only van der Waals inter-
actiong[25]. We expect that orientational degrees of freedom
associated with HB’s can produce new kinds of phase dia-
grams in other situations, such as the closed loop diagrams
[19,20, which arise when unlike molecules form stronger
HBs, than the like molecules.

To conclude, we have studied aqueous mixtures from sta-
tistical mechanical point of view by extending a lattice
model of water. These calculations yield several results that
need quantitative verification. Such experimental tests would
help us to make better models of water, in particular, in
understanding the quantitative role of hydrogen bonds. These
also suggest that detailed exploration of phase diagrams of
aqueous mixtures can also be a fruitful way of probing basic
properties of water.
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